Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(4): e0127822, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36877046

RESUMO

Aspergillus spp. are known for their lignin-degrading ability and also for the degradation of complex aromatic compounds. In this paper, we present the genome sequence of Aspergillus ochraceus strain DY1, which was isolated from rotten wood in a biodiversity park. The total genome size is 35,149,223 bp, including 13,910 hits of protein-encoding genes, with a GC content of 49.92%.

2.
Front Microbiol ; 13: 996220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419419

RESUMO

Information on the role of boron (B) on soil physico-chemical and biological entities is scarce, and the precise mechanism in soil is still obscure. Present field investigation aimed to assessing the implication of direct and residual effect of graded levels of applied-B on soil biological entities and its concomitant impact on crop productivity. The treatments comprised of five graded levels of B with four replications. To assess the direct effect of B-fertilization, cauliflower was grown as a test crop wherein, B-fertilization was done every year. For assessment of succeeding residual effects of B-fertilization, cowpea and okra were grown as test crops and, B-fertilization was phased out in both crops. The 100% recommended dose of NPK (RDF) along with FYM was uniformly applied to all crops under CCOCS. Results indicated that the direct effect of B had the edge over residual effect of B in affecting soil physico-chemical and biological entities under CCOCS. Amongst the graded levels of B, application of the highest B level (2 kg ha-1) was most prominent in augmenting microbiological pools in soil at different crop growth stages. The order of B treatments in respect of MBC, MBN, and soil respiration at different crop growth stages was 2.0 kg B ha-1 > 1.5 kg B ha-1 > 1.0 kg B ha-1 > 0.5 kg B ha-1 > 0 kg B ha-1, respectively. Moreover, maximum recoveries of potentially mineralizable-C (PMC) and potentially mineralizable-N (PMN) were noticed under 2 kg B ha-1. Analogous trend was recorded in soil microbial populations at different crop growth stages. Similarly, escalating B levels up to 2 kg B ha-1 exhibited significantly greater soil enzymatic activities viz., arylsulphatase (AS), dehydrogenase (DH), fluorescein diacetate (FDA) and phosphomonoesterase (PMA), except urease enzyme (UE) which showed an antagonistic effect of applied-B in soil. Greater geometric mean enzyme activity (GMEA) and soil functional diversity index were recorded under 2 kg B ha-1 in CCOCS, at all crop growth stages over control. The inclusive results indicated that different soil physico-chemical and biological properties CCOCS can be invariably improved by the application of graded levels of B up to 2 kg B ha-1 in an acid Inceptisol.

3.
Front Plant Sci ; 13: 967665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340395

RESUMO

Climate change is a critical yield-limiting factor that has threatened the entire global crop production system in the present scenario. The use of biostimulants in agriculture has shown tremendous potential in combating climate change-induced stresses such as drought, salinity, temperature stress, etc. Biostimulants are organic compounds, microbes, or amalgamation of both that could regulate plant growth behavior through molecular alteration and physiological, biochemical, and anatomical modulations. Their nature is diverse due to the varying composition of bioactive compounds, and they function through various modes of action. To generate a successful biostimulatory action on crops under different parameters, a multi-omics approach would be beneficial to identify or predict its outcome comprehensively. The 'omics' approach has greatly helped us to understand the mode of action of biostimulants on plants at cellular levels. Biostimulants acting as a messenger in signal transduction resembling phytohormones and other chemical compounds and their cross-talk in various abiotic stresses help us design future crop management under changing climate, thus, sustaining food security with finite natural resources. This review article elucidates the strategic potential and prospects of biostimulants in mitigating the adverse impacts of harsh environmental conditions on plants.

4.
Electron. j. biotechnol ; 41: 72-80, sept. 2019. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1087172

RESUMO

Background: Microbial community analysis of electronic waste (e-waste)-polluted environments is of interest to understand the effect of toxic e-waste pollutants on the soil microbial community and to evaluate novel microorganisms resisting the toxic environment. The present study aims to investigate the bacterial community structure in soils contaminated with e-waste from various sites of Loni and Mandoli (National Capital Region (NCR), India) where e-waste dumping and recycling activities are being carried out for many years. Results: Interferences to soil metagenomic DNA extraction and PCR amplification were observed because of the presence of inhibiting components derived from circuit boards. Whole-metagenome sequencing on the Illumina MiSeq platform showed that the most abundant phyla were Proteobacteria and Firmicutes. Deltaproteobacteria and Betaproteobacteria were the most common classes under Proteobacteria. Denaturing gradient gel electrophoresis (DGGE) analysis of the bacterial 16S rRNA gene showed that e-waste contamination altered the soil bacterial composition and diversity. There was a decrease in the number of predominant bacterial groups like Proteobacteria and Firmicutes but emergence of Actinobacteria in the contaminated soil samples. Conclusions: This is the first report describing the bacterial community structure of composite soil samples of ewaste-contaminated sites of Loni and Mandoli, Delhi NCR, India. The findings indicate that novel bacteria with potential bioremediating properties may be present in the e-waste-contaminated sites and hence need to be evaluated further.


Assuntos
Microbiologia do Solo , Bactérias/isolamento & purificação , Bactérias/genética , Resíduo Eletrônico/análise , Poluentes do Solo , Reação em Cadeia da Polimerase , Metais Pesados , Proteobactérias/isolamento & purificação , Metagenômica , Eletroforese em Gel de Gradiente Desnaturante , Microbiota , Firmicutes/isolamento & purificação , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...